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Abstract

Generative Adversarial Nets (GANs) have been a strong performing generative
model, despite their reported training instability. Auxiliary tasks, e.g., through
self-supervision, have been used to encourage the discriminator of the GANs to
learn meaningful feature representations. Specifically, rotating an image and then
predicting the rotation has been used as such a self-supervised task. However,
the rotation prediction depends heavily on the dataset. In this work, we propose
a new self-supervised pretext task that injects Gaussian noise in a block of the
discriminator and then predicts in which block the noise was injected. We verify
experimentally the proposed pretext task and demonstrate that it leads to improve-
ments in the quality of the synthesized images in three datasets. In addition, we
assess the representation learning performance of the pretext task and find that
it performs on par with rotation-based pretext task. Interestingly, the representa-
tions learned with the proposed pretext task lead to a more balanced classification
accuracy across classes, namely there are larger improvements for weaker classes.

1 Introduction

Since their advent, Generative Adversarial Nets (GANs) [6] have demonstrated strong performance
in synthesizing photo-realistic images [[13| 13]. The training of GANs includes a minmax game
with two players, i.e., a generator network and a discriminator network. The generator maps
the low dimensional input to a high-dimensional sample that resembles samples from the target
distribution. At the same time, the discriminator learns to distinguish the synthesized samples from
target distribution samples. However, the training of GANSs, especially the performance control of
the discriminator, is usually difficult and unstable [[13}[17]]. The spectral normalization [13]] of the
discriminator weights has proved a significant component in reducing the instability of training GANs.
Despite such regularization schemes, the instability is not completely mitigated yet.

Self-supervised learning has been used to augment the adversarial minmax game in GANs [9] to
stabilize the training [[12} [15]. Similar to DiffAugment proposed in [[19], the role of self-supervision
is to regularize the discriminator and enhance the performance of GANs [15]. Chen et al. [2] are
motivated by [[1,15] to add a pretext task classifier that shares weights with the discriminator. The
pretext task rotates the images and then the classifier (an extra network sharing the core part of
computation with the discriminator) predicts the rotation angle. In other words, simultaneously to the
minmax game, the self-supervised classifier extracts continuously improved representations [2], thus
leading to a discriminator with meaningful representations.

However, the performance of rotation-based pretext task depends heavily on the dataset. When the
appearance of an image remains (approximately) invariant to (some) rotation angles, e.g. like in
Figure[2] then a rotation-based pretext task, might not be optimal. Furthermore, we know from [16]]
that, after applying instance noise to samples, the discriminator is less likely to overfit because the
instance noise can make the training distribution broader. Combining these facts, we propose a new
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pretext task, which applies Gaussian noise randomly in one of the blocks of the discriminator with the
task to predict in which block the noise was inserted. Simultaneously, based on the developments on
the representation learning, we find that replacing the convolutional discriminator with a polynomial
neural network provides an improvement in both the quantitative and qualitative metrics, and we thus
customize the pretext task for such a discriminator. The auxiliary loss (i.e., pretext task) predicts the
identity of the polynomial that the noise was inserted. We assess the performance of the designed
pretext task using both standard GANs metrics, and consider the representation learning in isolation.
That is, after the training, we utilize the discriminator for a classification task. Our evaluation on
three datasets demonstrates the efficacy of the proposed task and reveals that the proposed pretext
task learns representations that are stronger for the weakest classes.

2 Self-Supervised Poly-GAN with Gaussian Noise

The preliminary experiments demonstrate that replacing the convolutional discriminator with a
polynomial neural network from the recently proposed II-net family [3] improves the performance of
the GANs. We will also compare the performance in the experimental section, but we assume below
that the discriminator is a polynomial neural network.

Different from augmenting the input samples of the discriminator [2, [19], the idea of Self-Supervised
Poly-GAN (P-SS-GAN) with Gaussian Noise is to apply Gaussian noise randomly in one of the
blocks of the discriminator to act on the intermediate representation. We compare the output of the
discriminator with the pseudo labels [10] to see if the position of the inserted Gaussian noise can be
correctly predicted. Figure[T|shows how the Gaussian noise-based pretext works in GANs.

Suppose there are N blocks in the discriminator with the output of the t" block being z;41 =
zt + Czi + (Czt) * z;. The operator C' represents a series of convolution operations, z; is the output
from the (¢ — 1) block and (C'z;) * z; is the second order polynomial term, where * is the Hadamard
product. For each sample we choose one block out of NV with a uniform probability and multiply the
second order term by Gaussian noise as illustrated in Figure[3] In other words, if ¢ is the block we
introduce Gaussian noise, the output of this block will be: z¢11 = 2 + Cz; + (Czt) * 2z¢ * p. Here
p~N (u, 52) is samples from a Gaussian distribution parameterized by y and o2 and has the same
size as z;. If t is not the block we apply Gaussian noise, the output of this block remains the same, i.e.
zt+1 = 2t + Czy + (Cz) * z;. More formally, we introduce an N-dimensional variable v as follows:

Zip1 =2+ Co + (Czy) vz s M= 2 + Czp + (Czp) * 2 % [pxo[t] + (1= 0[t])], (D

where M = p xv[t] + (1 — v[t]), with Zf\; v[i]=1land v[i] € {0,1},1 C L ={1,2... N} and!
is randomly chosen with the same probability in each time. Given [, we have v[l] = 1,v[i # ] = 0.

A classifier (), which shares all the weights except for the last layer with the discriminator D,
evaluates the performance on the pretext task. Similar to the rotation-based pretext task, if S = {0, 1}
denotes fake or real images and L = {0, 1..., N} denotes the position of Gaussian noise, the value
function V(G, D) as mentioned in [2] and loss function can be written as:

V(G, D) = EonPyyia(e) l0g Pp(S = 1| )] + Exnpg(z) log (1 = Pp(S=0]2)] @)
Lg = —V(G, D) - OzEwNpGElNL [log QD(L =1 | Z‘,l)] 3)

Lp=V(G,D)— BEzup,,,Einr logQp(L =11 x,1)] 4

3 Experiments

Datasets Three widely used datasets are used for the experimental validation of the proposed
pretext task. The CIFAR10 dataset [[L1] consists of 60,000 32 x 32 x 3 color images in 10 classes.
The STL10 dataset [4] includes 100,000 images with resolution 96 x 96 x 3, while STL10 includes
10 classes. The Columbia Object Image Library (COIL20) dataset [[14] contains 20 objects, each
of which has 72 images captured every 5 degrees along a viewing circle. We use CIFARI1O as a
standard dataset in the task. STL10 is used since it contains images of higher-resolution but with



Figure 1: Diagram of our Self-Supervised Poly-GAN (P-SS-SNGAN(N)). G(z) generates fake
images that look like images in the real world. z is the latent variable. P(z) is the real distribution.
The generator and the discriminator play a two-player game to determine the image real or fake, and
they collaborate to predict the position of Gaussian noise. L is a block to generate the random vector
l. During the training, the images and the vector [ are sent to the discriminator together.

similar semantic meaning to CIFAR10. COIL20 is used, since it contains more classes but fewer
samples. For the STL10 dataset and the COIL20 dataset, images are firstly resized to 64 x 64, so the
generator adds a block while we don’t modify the discriminator.

Models For our experiment, we use Polynomial SNGAN(P-SNGAN) where we replace the convo-
lutional discriminator of SNGAN with the Polynomial neural nets [3]] and observe that they improve
representation power. Figure [3|shows the basic block of P-SNGAN’s discriminator. For Gaussian
noise-based pretext task, we copy the images from in a batch and apply noise to the second half of the
joined batch of images. First half of images(without noise) are used for true/fake classification task.

3.1 Results

Sample Quality For our quantitative evaluation we use the standard metric of Frechet Inception
Distance (FID) [8] that performs up to second order matching of two distributions. Table[T|reports
the FID scores on the three datasets. On the CIFAR10, within 50k iterations, SNGAN obtains the
highest FID score. When the discriminator of SNGAN is replaced with the polynomial network,
the FID score of P-SNGAN has been significantly improved by 4.418 compared to SNGAN. Both
the rotation-based pretext task (P-SS-SNGAN(R)) and our pretext task (P-SS-SNGAN(N)) produce
more extra improvement, get an FID score below 18. Indicative synthesized images from SNGAN,
P-SNGAN, P-SS-SNGAN (R), and P-SS-SNGAN (N) are depicted in Fig. [4 [5] [6] and[7] respectively
in the appendix. On the STL10 and COIL20, we add a block in the generator, and run 30k iterations.
The performance of the proposed method is on par to the rotation-based pretext task.

Representation Quality Beyond the evaluation of the sample quality, we also assess the represen-
tation learning of the discriminator [18]]. We replace the dense layers of the discriminator with a
single dense layer trained for classification on the particular dataset, while we maintain the rest of
the weights frozen. The accuracy of the classifier is considered as the evaluation metric indicating
the extraction of high-quality representations. Table [2]reports the accuracy across different datasets.
On CIFARI0, our method can exceed the baseline by 5.53%. As a supplement, we also delete the
pretext loss term from P-SNGAN(N) to validate the effect of the regularization via Gaussian noise
only. The accuracy is 61.88%. Our method also presents a similar performance to the rotation-based
method on STL10 and COIL20. Moreover, Table 3| shows the accuracy of each class of images. On
CIFARI10, the correctness on classes 3 and 6 exceeds the rotation-based pretext task by 5.8% and
8.2%, respectively. Interestingly, our method can achieve accuracy on nine out of ten categories
exceed 50%, and the lowest accuracy is 49.4%. On STL10, our method’s accuracy on classes 4 and
6 exceeds the rotation-based pretext task by 14.2% and 9.8%. What is more, The variance of the
accuracy on ten categories has been reduced by 40%. The result on COIL20 is similar: The variance
of the accuracy across categories is reduced by 34%.



Table 1: FID score. On CIFAR10, we run all the settings: baseline SNGAN, SNGAN with a
polynomial discriminator(P-SNGAN), SNGAN with rotation-based pretext task(SNGAN(R)), and
P-SNGAN with two different pretext tasks. The polynomial discriminator can alone contribute a
decrease in the FID score of 4.418, i.e., from 23.680 to 19.292, while the SNGAN(R) decreases the
FID score from 23.680 to 21.668 . With a polynomial discriminator, two pretext tasks can achieve
lower FID scores: 17.166 and 17.886. As for STL10 and COIL20, we observe similar result.

Method CIFAR10 | STL10 | COIL20
SNGAN 23.680 | 62.381 | 94.491
P-SNGAN 19.262 | 61.667 | 92.421
SNGAN(R) 21.668 | 61.142 | 92.257
P-SS-SNGAN (R) | 17.166 | 59.664 | 91.321
P-SS-SNGAN (N) | 17.886 | 60.163 | 91.782

Table 2: Accuracy. On CIFAR10, the polynomial discriminator can alone contribute an increase in
the accuracy of 1.48%, i.e., from 58.28% to 59.76%, while the SNGAN(R) increases the accuracy
from 58.28% to 60.17%. With a polynomial discriminator, two pretext tasks can achieve better
performance: 64.17% and 63.81%. As for STL10 and COIL20, the accuracy of two pretext tasks is
quite close.

Method CIFAR10 | STL10 | COIL20
SNGAN 58.28% | 56.84% | 90.00%
P-SNGAN 59.76% | 57.64% | 92.67%

SNGAN(R) 60.17% | 57.29% | 94.00%
P-SS-SNGAN (R) | 64.17% | 58.12% | 96.67%
P-SS-SNGAN (N) | 63.81% | 57.85% | 95.67%

The detailed results in Tables [[7] [8] [0} [I0] [T} [T2] indicate that the proposed pretext task results in a
more balanced classification accuracy across different classes. That means that classes with weaker

accuracy are learn richer representations.

4 Conclusion

We proposed a new pretext task for self-supervised GAN. Similar to present pretext tasks, our
Gaussian noise-based pretext task can significantly improve the quality of the synthesized images
and the capacity of the discriminator to learn representations. Experiments on different datasets
verify that the Gaussian noise-based pretext task leads to a more balanced classification accuracy
among different categories. Our pretext task exhibits a stable performance on different images and is
especially suitable for images that are (approximately) rotation-invariant, such as flowers and medical

CT images.

Table 3: Classification accuracy per class. We rerun P-SS-SNGAN(R) five times and report the classes
with the lowest accuracy. Then we compare them with our method. On CIFAR10, the accuracy of
class 3 (bird) and class 6 (dog) by P-SS-SNGAN(R) is significantly lower than other classes, while
P-SS-SNGAN(N) improves the accuracy of class 3 and 6 significantly. On STL10, we observe similar
result in class 4 (cat) and class 6 (dog). Also, on STL10 and COIL20, our method can decrease the
variance of accuracy on classes. For detailed results, please find them in the appendix.

CIFAR10 STL10 COIL20

Method 3 6 02 4 6 0_2 P 0_2

P-SS-SNGAN(R) | 0.446 | 0.422 | 0.011 | 0.348 | 0.184 | 0.027 | 0.333 | 0.029

P-SS-SNGAN(N) | 0.504 | 0.504 | 0.011 | 0.490 | 0.282 | 0.015 | 0.920 | 0.019
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Table 4: Generator for the CIFAR10. We use similar architectures to the ones used in [13}[7]]. As for
STL10 and COIL20, there’s an additional ResBlock.

z € R ~ N(0,1)
dense, 4 x 4 x 256
ResBlock upsample
ResBlock upsample
ResBlock upsample

BN, RelLU, 3 x 3 conv, 3 Tanh

A Appendix

On the CIFAR10 dataset, we run the baseline SNGAN with the ResNet architecture [[7,113], SNGAN
with auxiliary rotation loss, P-SNGAN, P-SNGAN with auxiliary rotation loss, and P-SNGAN with
auxiliary Gaussian-noise loss. We used Adam for the optimization and used the hyper parameter
used in [7]]: The initial learning rate of D and G we set 0.0002, betal is 0.0, and beta2: 0.9. In each
iteration, we run five times discriminator and one-time generator. The loss type is the Hinge loss,
and the loss type for pretext task is cross entropy loss. We train the GAN for 50k iterations. During
the training of P-SS-SNGAN (rotation), the hyper-parameter o and 8 we set is 1 and 1 according
to [2]. During the training of P-SS-SNGAN (noise), o and 3 we set is 1 and 0.2. The mean p and
variance o of Gaussian noise we set is 0.8 and 0.25, which can make the pretext task challenge the
discriminator enough. On the COIL20 dataset, we manually divide part of images into the training
set and others into the test set for each class. As for Table 3| compared to Table 2, we run fewer but
the same epochs five times for each dataset.

In our experiment, we calculate FID using 50,000 synthesised images and save 100 synthesised
images for each 1,000 iterations. Experiments are mainly run on Colab and Google Cloud Plattform.
The GPU we use is Tesla P100, Tesla V100 and Tesla A100.

Figure 2: Rotation: The flowers look unchanged after rotation.



Figure 3: P-SNGAN’s basic block architecture in the discriminator. The input from the upper-left is
output from the last block, and the input from downright is 1 or Gaussian noise. This Gaussian noise
or 1 will do a Hadamard product with the input from the upper-left and current block’s output. At
last there’s a summation of three terms. As for the generator, the second order polynomial term is
removed and there’s a BN layer before the first ReLU layer and another BN layer between the second
SNConv2d layer and the second ReLU layer.

Figure 4: CIFAR10: Synthetic images from SNGAN.



Figure 5: CIFAR10: Synthetic images from P-SNGAN.

Figure 6: CIFAR10:Synthetic images from P-SS-SNGAN-R.




Figure 7: CIFAR10: Synthetic images from P-SS-SNGAN-N.

Figure 8: STL10: Synthetic images from P-SS-SNGAN-R.
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Figure 9: STL10: Synthetic images from P-SS-SNGAN-N.

Figure 10: COIL20: Synthetic images from P-SS-SNGAN-R.
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Figure 11: COIL:20 Synthetic images from P-SS-SNGAN-N.

Table 5: Discriminator for the CIFAR10. We use similar architectures to the ones used in [[13}[7].
There’re in total four basic blocks. Then there’s a activation function and a global sum pooling layer.
At last are two dense layers.

Image = R32><32><3

ResBlock downsample
ResBlock downsample
ResBlock
ResBlock
ReLU
Global sum pooling
dense — 1, dense — 5

Table 6: Discriminator for the STL10. The only difference from Table [5]is: The third basic block will
also downsample the images from previous block.

Image = R64><64><3

ResBlock downsample
ResBlock downsample
ResBlock downsample
ResBlock
ReLU
Global sum pooling
dense — 1, dense — 5
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Table 7: Accuracy score on CIFARIO0 via rotation loss. The raw refers to 10 classes of images and
the column refers to five times experiment. At last, we average on them.

1 2 3 4 5 6 7 8 9 10

1 0.68 | 0.79 | 0.40 | 0.77 | 046 | 038 | 0.67 | 0.64 | 0.75 | 0.67
2 | 070 | 078 | 0.46 | 054 | 059 | 053 | 0.69 | 0.66 | 0.75 | 0.52
3 0.58 | 0.79 | 049 | 052 | 0.56 | 0.21 | 0.76 | 0.73 | 0.80 | 0.57
4 1075 | 066 | 039 | 0.61 | 057 | 048 | 0.72 | 0.68 | 0.59 | 0.76
5 0.70 | 0.70 | 0.49 | 0.50 | 0.67 | 051 | 0.71 | 0.55 | 0.69 | 0.76
Ave | 0.682 | 0.744 | 0.446 | 0.588 | 0.570 | 0.422 | 0.710 | 0.652 | 0.716 | 0.656

Table 8: Accuracy score on CIFAR10 via Gaussian noise loss. The raw refers to 10 classes of images

and the column refers to five times experiment. At last, we average on them.

1 2 3 4 5 6 7 8 9 10
1 0.59 | 0.67 | 0.60 | 0.60 | 0.54 | 052 | 0.64 | 0.57 | 0.69 | 0.83
2 105 | 082 | 046 | 0.54 | 050 | 046 | 0.75 | 0.59 | 0.65 | 0.74
3 0.61 | 057 | 046 | 045 | 045 | 051 | 0.77 | 0.70 | 0.80 | 0.80
4 1071|077 | 042 | 040 | 050 | 0.53 | 0.74 | 0.71 | 0.62 | 0.78
5 0.70 | 0.70 | 0.49 | 0.50 | 0.67 | 051 | 0.71 | 0.55 | 0.69 | 0.76
Ave | 0.578 | 0.730 | 0.504 | 0.494 | 0.526 | 0.504 | 0.722 | 0.626 | 0.698 | 0.776

Table 9: Accuracy score on STL10 via rotation loss. The raw refers to 10 classes of images and the
column refers to five times experiment. At last, we average on them. In this experiment the images
are resized to 64 x 64 at first.

1 2 3 4 5 6 7 8 9 10
1 0.76 | 048 | 0.78 | 0.34 | 0.72 | 0.12 | 0.55 | 0.66 | 0.49 | 0.72
2 1070 | 049 | 063 | 033 | 043 | 022 | 0.63 | 0.71 | 0.56 | 0.73
3 073 | 054 | 0.64 | 0.33 | 0.64 | 027 | 0.75 | 0.29 | 0.51 | 0.76
4 1076 | 050 | 062 | 0.36 | 036 | 0.17 | 0.67 | 0.74 | 0.63 | 0.65
5 0.70 | 0.56 | 0.78 | 0.38 | 0.44 | 0.14 | 0.85 | 0.52 | 048 | 0.64
Ave | 0.730 | 0.514 | 0.690 | 0.348 | 0.518 | 0.184 | 0.690 | 0.584 | 0.534 | 0.700

Table 10: Accuracy score on STL10 via Gaussian noise loss. The raw refers to 10 classes of images

and the column refers to five times experiment. At last, we average on them.

1 2 3 4 5 6 7 8 9 10

1 069 | 052 | 0.78 | 048 | 0.55 | 031 | 0.52 | 0.39 | 059 | 0.51
2 [ 071 | 048 | 074 | 040 | 0.56 | 035 | 039 | 0.59 | 0.55 | 0.57
3 0.80 | 049 | 0.65 | 047 | 0.59 | 0.26 | 049 | 0.52 | 0.75 | 0.26
4 1077 | 045 | 083 | 042 | 046 | 0.15 | 0.73 | 0.54 | 0.54 | 0.40
5 0.67 | 046 | 052 | 0.68 | 041 | 034 | 0.62 | 0.21 | 054 | 0.71
Ave | 0.728 | 0.480 | 0.704 | 0.490 | 0.514 | 0.282 | 0.550 | 0.450 | 0.594 | 0.490
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Table 11: Accuracy score on COIL20 via rotation loss. The raw refers to 20 classes of images and
the column refers to five times experiment. At last, we average on them.

1 2 3 4 5 6 7 8 9 10

1.0 | 053 1.0 1.0 | 0.53 1.0 1.0 1.0 1.0 1.0

1.0 | 0.07 | 0.27 1.0 | 093 1.0 1.0 1.0 | 093 1.0

0.87 | 0.27 1.0 1.0 | 040 1.0 1.0 1.0 1.0 1.0

0.60 | 0.53 1.0 1.0 | 0.87 | 0.87 1.0 | 0.87 | 0.53 1.0

N[ B W =

0.70 | 0.70 | 0.49 | 0.50 | 0.67 | 051 | 0.71 | 0.55 | 0.69 | 0.76

Ave | 0.879 | 0.333 | 0.707 | 1.000 | 0.587 | 0.973 | 1.000 | 0.973 | 0.893 | 1.000

11 12 13 14 15 16 17 18 19 20

1.0 1.0 | 0.80 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 | 0.87 1.0 1.0 1.0 1.0 1.0 | 0.67 1.0

0.87 1.0 | 0.73 1.0 1.0 1.0 1.0 1.0 1.0 1.0

N B WD —

0.70 | 0.70 | 0.49 | 0.50 | 0.67 | 0.51 | 0.71 | 0.55 | 0.69 | 0.76

Ave | 0.973 | 1.000 | 0.880 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.973 | 1.000

Table 12: Accuracy score on COIL20 via Gaussian noise loss. The raw refers to 20 classes of images
and the column refers to five times experiment. At last, we average on them.

1 2 3 4 5 6 7 8 9 10

1.0 | 093 1.0 1.0 1.0 | 0.13 1.0 1.0 | 0.87 | 0.60

1.0 1.0 | 053 1.0 | 0.67 1.0 1.0 1.0 | 0.53 1.0

1.0 1.0 | 0.87 1.0 | 0.73 | 0.87 1.0 1.0 | 0.87 1.0

1.0 | 0.80 | 0.67 1.0 | 020 | 0.93 1.0 1.0 | 0.73 1.0

N B W —

1.0 | 0.87 | 0.53 1.0 | 027 | 040 | 1.01 1.0 | 0.73 1.0

Ave | 1.000 | 0.920 | 0.720 | 1.000 | 0.573 | 0.667 | 1.000 | 1.000 | 0.747 | 0.920

11 12 13 14 15 16 17 18 19 20

1.0 1.0 | 0.27 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.60 1.0 | 053 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.33 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 0.87 1.0

N B W =

0.93 1.0 | 0.93 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Ave | 0.773 | 1.000 | 0.747 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.973 | 1.000
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